C. U. SHAH UNIVERSITY **Summer Examination-2022**

Subject Name : Problem Solving-II

Subject Code : 5SC	03PRS1	Branch: M.Sc. (Mathemati	s)	
Semester: 3	Date: 27/04/2022	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		SECTION – I Attempt the Following questions.	[07]
	a.	Find $\Delta^2 x^3$ at $x = 0$.	(02)
	b. c. d.	Is a group of order 10 simple? Verify. Define Monoid. Give two examples of Monoid which are not Groups. True of False: $\mathbf{Z} \times \mathbf{Z}$ is a cyclic group.	(02) (02) (01)
Q-2		Attempt all questions	[14]
c	a.	Let <i>G</i> be a finite abelian group of order <i>n</i> . Show that the map $x \to x^m$ is an automorphism if $gcd(m, n) = 1$.	(06)
	b.	Let G be a group, H and K be subgroups of G, if $(o(H), o(K)) = 1$ then what we can say about $o(H \cap K)$?	(04)
	с.	Use Lagrange's Inverse Interpolation Formula to find x when $f(x) = 14$ given $f(0) = 16.35$, $f(5) = 14.88$, $f(10) = 13.59$ and $f(15) = 12.46$	(04)
		OR	
Q-2			
	a.	Let $H = \langle a \rangle$ and $K = \langle b \rangle$ be two cyclic groups of order m and n respectively such that $(m, n) = 1$ then show that $H \times K$ is cyclic group generated by mn .	(06)
	b.	For which values of n, the polynomial $P(x) = x^3 - nx + 2$ is reducible over Q .	(04)
	c.	Find $\Delta(e^{ax} \log bx)$.	(04)

Q-3

Attempt all questions.

- Find the integral surface of following Partial Differential Equation (05) a. $(y-z)Z_x + (z-x)Z_y = (x-y)$ given z = 0 on xy = 1. Find Particular Integral of $(D^2 - DD' + 2D' - 1)z = x^2y^2$.
- (05) b. Using Euler's Modified method find y(0.3) given c. (04)
 - y' = 1 y, y(0) = 0. Take h = 0.1

[14]

Q-3	a.	Evaluate $f(8)$ using Newton's Divided difference formula from the						m the	
		following table:							
		X Y	4 48	5	7 294	10 900	11	12	
	b.	-	-	g linear equ			1210	2028	
	D.	Solve the	Ionowing				incuiou.		
	c.	$y^2p - xyq = x(z - 2y).$ Let G be a non-abelian group of order p^3 where p is prime then find						n find	
		o(Z(G)).							
				SE	CTION -	· II			
Q-4		Attempt	the Follo	wing quest	tions.				
				f cosets of l					
		-		-		-	$x^{2}r - 2s$	t+t=0.	
			•	our elemen	ts in $U(20)$).			
	d.	Solve: Δ	sınx.						
2-5	5 Attempt all questions								
	a.	Solve $\frac{dy}{dx}$	= xy + y	y^2 given $y(0)$)) = 1.Find	ł y(0.1) us	ing Runge	Kutta's	
		Solve $\frac{dy}{dx} = xy + y^2$ given $y(0) = 1$. Find $y(0.1)$ using Runge Kutta's method (take $h = 0.1$).							
	b.	Check whether the following polynomials are irreducible over Q or not.					Q or not .		
		i) $x^6 + x^3 + 1$							
			$x^3 - 4x$						
	c.	Find ison	norphic gr	roup to $U(7)$	/20).				
					OR				
-5									
	a.	Let $o(G) = pq$, p and q are prime numbers with $p < q$. If							
		$p \neq (q-1)$ i.e.p does not divides $q-1$, then show that G is cyclic.							
	b.	Solve the system of equations							
					x + 4y -				
					-2x + y +				
		Using Co	uga Elimi	: nation metl	x + 2y - z	z = Z			
		Using Oa			llou.				
)-6		Attempt	all quest	ions					
•	a.	-	-		linear equ	ations usin	g Gauss Se	idel	
		method:			-		-		
		28 <i>x</i>	+4y - z	x = 32, x +	-3y + 10z	= 24, 2x	+ 17y + 4z	z = 35.	
					22	o?			
	b.	Solve the	e heat(dif	fusion) equ	ution $\frac{\partial^2 \varphi}{\partial \phi}$	$+\frac{\partial^2 \varphi}{\partial x^2} = \frac{1}{2} \frac{\partial^2 \varphi}{\partial x^2}$	$\frac{\partial \varphi}{\partial \phi}$ by the n	nethod of	
		Solve the heat(diffusion) equation $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{1}{k} \frac{\partial \varphi}{\partial t}$ by the method of separation of variables and show that the solution is of the form						n	
							nd m are so		
		$\varphi(x, y, t)$	$c) = e^{\perp t}$	(in thy)		where n an	nd m are son	me	

 $\varphi(x, y, t) =$ constants.

Q-6

OR

a. Find the missing value in the following data:

	1 01 1			1 1 1 1	
Y	2	5	7		32
Х	1	2	3	4	5

b. Find the number of irreducible monic quadratic polynomial in $\mathbf{Z}_{\mathbf{P}}[X]$, (05) where p is prime.

c. Solve:
$$pqz = p^2(xq + p^2) + q^2(yp + q^2)$$
 using Charpit's method. (03)

