\qquad

C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name : Problem Solving-II

Subject Code : 5SC03PRS1
Semester: 3 Date: 27/04/2022

Branch: M.Sc. (Mathematics)

Time: 02:30 To 05:30 Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the Following questions.

a. Find $\Delta^{2} x^{3}$ at $\mathrm{x}=0$.
b. Is a group of order 10 simple? Verify.
c. Define Monoid. Give two examples of Monoid which are not Groups.
d. True of False: $\mathbf{Z} \times \mathbf{Z}$ is a cyclic group.

Q-2 Attempt all questions
a. Let G be a finite abelian group of order n. Show that the map $x \rightarrow x^{m}$ is an automorphism if $\operatorname{gcd}(m, n)=1$.
b. Let G be a group, H and K be subgroups of G ,if $(o(H), o(K))=1$ then what we can say about $o(H \cap K)$?
c. Use Lagrange's Inverse Interpolation Formula to find x when $f(x)=14$ given $f(0)=16.35, f(5)=14.88, f(10)=13.59$ and $f(15)=12.46$

OR

Q-2
a. Let $H=<a>$ and $K=$ be two cyclic groups of order m and n
respectively such that $(m, n)=1$ then show that $H \times K$ is cyclic group generated by $m n$.
b. For which values of n , the polynomial $P(x)=x^{3}-n x+2$ is reducible over \mathbf{Q}.
c. Find $\Delta\left(e^{a x} \log b x\right)$.

Q-3
Attempt all questions.
a. Find the integral surface of following Partial Differential Equation

$$
\begin{equation*}
(y-z) Z_{x}+(z-x) Z_{y}=(x-y) \text { given } z=0 \text { on } x y=1 \tag{05}
\end{equation*}
$$

b. Find Particular Integral of $\left(D^{2}-D D^{\prime}+2 D^{\prime}-1\right) z=x^{2} y^{2}$.
c. Using Euler's Modified method find $y(0.3)$ given
$y^{\prime}=1-y, y(0)=0$. Take $h=0.1$

Q-3

a. Evaluate $f(8)$ using Newton's Divided difference formula from the following table:

X	4	5	7	10	11	12
Y	48	100	294	900	1210	2028

b. Solve the following linear equation by Lagrange's method:

$$
y^{2} p-x y q=x(z-2 y)
$$

c. Let G be a non-abelian group of order p^{3} where p is prime then find $o(Z(G))$.

SECTION - II

Attempt the Following questions.

a. Find the number of cosets of $H=(4 \mathbf{Z},+)$ in $G=(\mathbf{Z},+)$.
b. Classify the following Partial Differential Equation : $x^{2} r-2 s+t=0$.
c. Find order of any four elements in $U(20)$.
d. Solve: $\Delta \sin x$.

Attempt all questions

a. Solve $\frac{d y}{d x}=x y+y^{2}$ given $y(0)=1$. Find $y(0.1)$ using Runge Kutta's method (take $h=0.1$).
b. Check whether the following polynomials are irreducible over Q or not .
i) $\quad x^{6}+x^{3}+1$
ii) $\quad x^{3}-4 x+2$
c. Find isomorphic group to $U(720)$.

OR

a. Let $o(G)=p q, p$ and q are prime numbers with $p<q$.If
$p \neq(q-1)$ i.e. p does not divides $q-1$,then show that G is cyclic.
b. Solve the system of equations

$$
\begin{gather*}
3 x+4 y-z=8 \tag{07}\\
-2 x+y+z=3 \\
x+2 y-z=2
\end{gather*}
$$

Using Gauss Elimination method.

Attempt all questions

a. Solve the following system of linear equations using Gauss Seidel method:

$$
\begin{equation*}
28 x+4 y-z=32, x+3 y+10 z=24,2 x+17 y+4 z=35 \tag{07}
\end{equation*}
$$

b. Solve the heat(diffusion) equation $\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=\frac{1}{k} \frac{\partial \varphi}{\partial t}$ by the method of separation of variables and show that the solution is of the form $\varphi(x, y, t)=e^{ \pm i(n x+m y)-\left(n^{2}+m^{2}\right) k t}$ where n and m are some constants.

OR

X	1	2	3	4	5
Y	2	5	7	---	32

b. Find the number of irreducible monic quadratic polynomial in $\mathbf{Z}_{\mathbf{P}}[X]$, where p is prime.
c. Solve : $p q z=p^{2}\left(x q+p^{2}\right)+q^{2}\left(y p+q^{2}\right)$ using Charpit's method.

